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This is based on recent work with Malcolm Perry in
arXiv1008.1763.
But there are a whole host of works on which it is based: Early
work of Duff, Tseytlin, Nicolai and West and more recent work
Hull and Zweibach, Waldram, Hitchin, Gualtieri amongst many
many others.

Sorry to those I havn’t mentioned but should have!
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We are used to duality symmetrires in string and M-theory.
There is the O(d,d) duality group of T-duality and the more
complicated M-theory duality groups of M-theory reduced on
T d

Recall,

d = 4 G = SL(5) (1)
d = 5 G = SO(5, 5)

d = 6 G = E6

d = 7 G = E7

These duality groups are manifest afte dimensional reduction
but ut has long been conjectured that they are present in some
way in the nonreduced theory ie. in 11d supergravity.
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Our goal will be to reformulate eleven dimensional supergravity
(at least its Bosonic sector) to make the duality group manifest
without any dimensional reduction.

And we want the repackaging to be geometric in some sense.

To do this we need to repackage gµν and Cµνρ into a single
geometric quantity.

The package will be the sort of generalized geometry
developed by Hitchin and extended to M-theory and Hull and
Waldram.
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We will show how Generalized/Extended geometry comes from
membrane world volume duality (as developed by Duff and Lu).

Most importantly we will show how to construct the dynamics of
generalized metric ie. a Lagrangian for the generalized metric.

And from a canonical analysis of supergravity why a normal
geometric action ie. Einstein Hilbert, cannot work.
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Generalized geometry for T-duality.

The tangent space is extended from Λ1(M) to Λ1(M)⊕ Λ∗1(M)
The metric on this generalized space is given by

MIJ =

(
gµν − B2

µν Bµ
σ

Bρ
ν gσρ

)
(2)

This is extending just the tangent space but one could do that
by extending the space itself. I will call this extended geometry
though for the string it is normally called doubled geometry
because the dimension of the space is doubled.
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From the world sheet point of view we combine string fields and
their T-duals into the same target space. Thus naturally the
above metric acts on the forms:

dX I = (dXµ, dyµ) (3)

where yµ is the string worldsheet field T-dual to Xµ.

Need to generalize this for membranes
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Extend space to include T-dual membrane windings, yµν along
with usual xµ coordinates. No longer a simple doubling. Now
the generalised tangent space is:

Λ1(M)⊕ Λ∗2(M) . (4)

What about the metric?

Lets return to the string and see how we can derive this.
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Deriving the generalised O(d , d) metric from the string world
sheet (Duff).

L = ∂µX a∂µX bgab + εµνBab∂µX a∂νX b (5)

Define
Fa

µ = ∂µX a (6)

and
G̃µa = εµνFa

ν (7)
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Equations of Motion are:

∂µGµ
a = 0 (8)

where

Gµ
1 = gabFb

µ + BabG̃µb (9)

The Bianchi Identity is:

∂µG̃µa = 0 (10)

D S Berman M-theory and generalized geometry



Introduction
Motivation and goals

Generalized/extended geometry
T-duality

membranes
D=4, SL(5)

More
Discussion

T-duality: use the following 1st order Lagrangian

L = hµνFa
µFb

ν + εµνFa
µFb

ν Bab + εµν∂µyaFa
ν (11)

and introduce
F̃µa = ∂µya (12)

The Bianchi and equations motion are exchanged between the
dual theories and the above variables are related as follows:(

Gµa

G̃d
µ

)
=

(
gab − B2

ab Ba
c

Bd
b gcd

)(
Fb

µ

F̃µc

)
(13)
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Generalize this for the membrane.

L =
√
−hhµν∂µX a∂νX bgab +

1
3
εµνρ∂µX a∂νX b∂ρX cCabc−

√
−h.

(14)
A first order form is then given by:

L =
√
−hhµνFa

µFb
ν gab +

1
3
εµνρFa

µFb
νFc

ρ Cabc

+
1√
2
εµνρ∂µyabFa

µFb
ν −

√
−h.

We have now the dual field yab We can follow the string and
determine the currents that are conserved either through
equations of motion or Bianchi identities in the membrane
theory and its dual. As before the Bianchi identities swap
between the ordinary theory and its dual.
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We can re-organize the information about the equations of
motion and Bianchi identities by defining

F̃µ ab = ∂µyab (15)

and writing( Gµa

G̃mn
µ

)
=
( gab + 1

2Ca
ef Cbef

1√
2
Ca

kl

1√
2
Cmn

b gmn,kl

)( Fb
µ

F̃µ kl

)
, (16)

where gmn,kl = 1
2(gmkgnl − gmlgnk ) and has the effect of raising

an antisymmetric pair of indices.

It is this matrix that we will take as the geometric way to
combine the metric and three form, and call it the generalized
metric, MIJ . This agrees with the metric found by Hull, Pacheco
and Waldram using other methods.
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Now, we extend the space as before, to one with coordinates
Z I = (xa, yab) and demand that MIJ is the metric on the space.

Now, the next step is to write down a Lagrangian such that
when we have the condition:

∂yab = 0 (17)

then we reproduce ordinary supergravity.

Ideally we would also have a more general section condition.
This is known for the string where Hull and Zweibach have
used closed string field theory to determine the most general
section condition that is an O(d,d) invariant. Here we don’t

know and it is an open question. There are some ideas of how
to get ot it that I will return to later.
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In order to be tractable we will work with the d=4 case of SL(5).
We are far away from doing the full duality groups at this stage.
For d>5 we also need to incude fivebrane winding modes too.

So decompose the eleven dimensional space into a trivial 4+7
split. We will concentrate on the 4 dimensional space and allow
arbitrary dependence on the coordinates in those directions ie.
no dimensional reduction.

So a = 1..4 which implies there are 10 yab coordinates and the
total extended space is ten dimensional.
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What is the Lagrangian describing the dynamics of the
generized metric.
It is not the Einstein Hilbert. To see this compare with Kaluza
Klien theory. We can imagaine the extended direction are KK
directions.
This is precisely the KK anstaz, and so we then we know what
such a metric will give.

R − nF 2 (18)

where
F ab

cd = ∂cCab
d − ∂dCab

c (19)
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This looks promising but the field strength, F is wrong, it is not
gauge invariant under

C → C + dλ . (20)

This is crucial. The gauge invariances of the orginal theory
mean we require the combination of diffeomorphism invariance
and two form gauge transfomations to leave the Lagrangian
invariant.

Interestingly, the algebra of these transformtions form a
Courant algebra and it is this rather than the algebra of
diffeomorphism that plays the key role.

What we mean by a scalar is something invariant under these
transformations.
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Out of a hat.........
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We can construct the Lagrangian with all the right properties:

L =

(
1

12
MMN(∂MMKL)(∂NMKL)−

1
2

MMN(∂NMKL)(∂LMMK )

+
1
24

MMN(MKL∂MMKL)(MRS∂NMRS)

− 1
2

MMNMPQ(MRS∂PMRS)(∂MMNQ)

)
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When MIJ is independent of yab then (up to surface terms)

L = R − 1
48

H2 (22)

where H = dC, reproducing the ordinary Lagrangian.

This is somewhat miraculous!
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Note, only true up to surface terms.

What is the SL(5) invariant section condition?

What are its local symmetries?

Expect that the above two questions are related
For the string case there has been a similar construction by
Hull and Zwiebach using closed string field theory. They also
construct a Lagrangian for the O(d,d) metric that reproduces the
usual one when there is no ya dependence but thet also have
an O(d , d) invariant constraint, which is that fields must obey:

∂I∂
I = ∂xa∂ya = 0 (23)
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They can reproduce the Courant algebra of the Canonical
supergravity.

but they must use the constraint to do so.

Since we don’t have the equivalent of string field theory, this
gives use our best hope of actually finding the right constraint
condition in our case.

open question.
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Other duality groups. eg E6

Λ1(M)→ Λ∗2(M)⊕ Λ∗5(M) (24)

So we have coordinates

Z I = (xa, yab, yabcde) (25)

with a = 1..6, ab = 7..21, abcde = 22..27. Thus the space is
27 dimensional and the 27 is the fundamental of E6 The yabcde
correspond to fivebrane winding modes.
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Do the same for the fivebrane world volume theory to produce
the E6 generalized metric also produced by Pacheco and
Waldram and Hull. There is one nice thing in this scheme, the
fivebrane world volume theory also contains the wrapped
membranes as fluxes of the world volume field strength.

MIJ =

 gab + 1
2Ca

ef Cbef + Ca
stuvwCbstuvw

1√
2
Ca

kl Ca
stuvw

1√
2
Cmn

b gmn,kl 0
Cmnopq

b 0 gmnopq,stuvw
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Can this method be extended to D-branes to get a generalized
geometry that incorporates the RR fields, certainy seems
possible.

Main problem, So far, we have not been able to produce L,
need a bigger hat or a better idea.
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Note, the presence of C6 probabley means we can’t really do
the split we have in mind. The duality realtion between H4 and
H7 is 11 dimensional and so we can’t get away with ignoring the
other space.
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So far only rewritten SUGRA (Bosonic part).

Need the section condition

Fermions?

Boundary terms?

Mathemtics of generalized geoemtry ie. Connections,
Curvatures, invariances etc.
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Uses:

Higher derivative terms??

Blackhole duality invariant entropy formulae

Nongeometric solutions eg U-fold type goemetries

More perhaps, but need to go futher...
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